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ABSTRACT: The analysis of steady state blood flow with heat transfer in an axisymmetric artery having constriction of cosine 

shape is presented. The blood is assumed to behave as an incompressible viscous fluid. The governing Navier-Stokes equations 

are transformed into compatibility equation along with energy equation. These non-linear equations are solved analytically 

with the help of Adomian decomposition method (ADM) and Regular perturbation method (RPM). The analytical results thus 

obtained are presented graphically for stream lines,  wall shear stress, separation, reattachment points and temperature 

distribution. It is observed that an increase in constriction height ( ) increases the wall shear stress, temperature and 

decreases the critical Reynolds number ( Re ). A parametric study of blood flow behavior is presented by two methods and 

comparison of two methods shows that ADM is reliable, easily computable and provides faster convergent series. 
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1. INTRODUCTION 
Congenital heart disease usually manifests itself in childhood 

but may pass unnoticed manhood. Arterial defects which are 

well tolerated may cause no symptoms until adult life or may 

first be detected incidentally on routine examination. Such 

patients may remain in good health for many years and 

subsequently develop related problems. In normal human life 

heart pumps blood producing oscillatory flow in vessel. It is 

well known that the deposit of cholesterol and proliferation of 

connective tissue may be responsible for the abnormal 

growths in the lumen of the artery. The progression of 

constriction in an artery is caused by the boundaries 

irregularities. The flow of blood is discussed by many authors 

theoretically, experimentally as well as numerically for better 

understanding of flow properties in the presence of 

constriction. Forrester and Young [1] presented the analytical 

solution of Newtonian fluid for the axisymmetric, steady, 

incompressible flow and consider the mild constriction for 

the flow of blood both theoretically and experimentally in the 

converging and diverging tube. Morgan and Young [2] 

examined the approximate analytical solution of 

axisymmetric, steady flow which is applicable to both mild 

and severe constriction by using an integral method, this 

work may be considered as an extension of [1]. K. Haldar [3] 

investigated the analysis of blood flow treating it as viscous 

fluid flowing through an axisymmetric artery having 

constriction of cosine shape. Chow and Soda [4] presented 

the analytical solution for Newtonian fluid flow in an 

axisymmetric tube valid for the case where the spread of 

roughness is large compared with mean radius of the tube. 

Chow et al. [5] analyzed the steady laminar flow of 

Newtonian fluid for different physical quantities by 

considering the sinusoidal wall surface variation. 

Previous work found in literature and cited above is limited to 

the flow pattern, pressure gradient, separation and 

reattachment points. In present investigation the blood is 

assumed to be Newtonian fluid of constant density flowing 

through a symmetric artery with constriction of cosine shape 

and constant volume flow rate. In the present paper the 

stream line, wall shear stress, separation, reattachment points 

and temperature distribution of blood flowing through an 

artery are analyzed by two methods namely ADM and RPM. 

The results where possible are compared with published data 

and found good agreement.       

3.   PROBLEM FORMULATION 
It is assumed that the blood behaves like a homogeneous, 

incompressible, non-isothermal Newtonian fluid and  the 

flow field is independent of time. At the inlet and outlet 

sections of the artery the flow is assumed to be Poiseuille or 

fully developed flow. The axial direction of flow is 

considered along axis~ z  and axis~ r  is normal to it. 

The profile of constriction in dimensional form is 

 





































,otherwise

,
4

~

4

~4
cos1

2~

o

oo

o

o

R

l
z

l

l

z
R

zR



                                                  (1) 

where   is the maximum height of constriction, 2/ol  the 

length of constricted region and oR ,   zR ~  are the 

unobstructed and variable radius of the artery in the 

constricted region.  According to geometry of the problem, 

the boundary conditions on velocity components are obtained 

as 
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where first two boundary conditions are no slip conditions, 

third is symmetry, fourth is constant volume flow rate and 

ou  is the characteristic velocity. Boundary conditions on 

temperature distribution are 



5032 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(6),5031-5040,2016 

November-December 

,0~0~

~
),~(~~

1








rat
r

T

zRratTT

                    (3) 

where 1T  is the temperature on the boundary. This is 

axisymmetric steady problem of blood flow in cylindrical 

coordinates and the velocity vector V
~

 becomes as 
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Introducing the dimensionless variables as follows 
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where oT  is the temperature of blood at the center. 

 
Figure 1:  Geometry of the problem. 

 

The dimensionless form of boundary profile (1) for the 

constricted region is 
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where 

oR

zR
f

)~(
  and oR/   are dimensionless 

measure of constriction in reference to artery. 

The equations which govern the flow field are the 

conservation of mass and momentum along with the energy 

equation. These non-linear equations have unknown velocity 

components  vu, , pressure  p  and temperature  T . 

Introducing the stream functions transformation to find the 

velocity components as 
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which satisfying the continuity equation identically.  After 

eliminating pressure gradient from momentum equations, the 

compatibility equation is obtained of the form 
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and energy equation in terms of stream function 

reduces as 
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The boundary conditions in terms of stream function becomes 
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where 
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and 
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in which Re  is the Reynolds number, Br  the Brinkman 

number, Pe  the Peclet number and   the ratio of radius of 

the artery to the length of constriction. 

Now our aim is to solve the compatibility equation (8) and 

energy equation (9) along with boundary conditions (10). 

3.    Solution of the Problem: 

The resulting compatibility and energy equations are non-

linear and finding of exact solution is very difficult. We apply 

ADM and RPM on these equations to find the series solution 

and considering   as a small parameter for RPM. In the 

current investigations, we present the solution of non-linear 

equations by ADM and graphical discussion by both 

methods. 

3.1    Solution of compatibility equation by ADM: 

The compatibility equation (8) in terms of linear operator ( L 

) and Adomian polynomial ( nA ) is 
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where L and nA  are defined as 

,
1

2

2

rrr
L









                                         (14) 

 
,

,

,

Re

2

2

rz

r

E

rAn

















                                (15) 

Assuming that inverse operator .1L  exist and defined as 
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Operating  
2L  to equation (13), we get 
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which gives 
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where   is dummy variable, which is used just to constitute the systems for different orders and  A, B, C and D are functions 

of z  to be determined. The systems for different orders of   are obtained by substituting 
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in equation (18), we obtain 

 

   
,

,
1

2

,

242

ln

16
,

2

0

2

2

2
22

4

0

4

24

0

2

2224

0






















































































































































z

zr

rrr
L

z

zr

LAL

D
r

C
rrr

B
r

Azr

n

n

n

n

n

n

n

n

n

n

n

n











  (20) 

and boundary conditions becomes 
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Equating the power of 
0  on both sides of (20) and (21), we 

get 
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The boundary conditions for 0  are 
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Applying these boundary conditions to (22), we obtain the 

solution for 0  as 
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It is observed that the expression for  0  is same by both the 

methods.  The recursive relation for different orders of   

becomes as 
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Using the recursive relation (25), the relations for 1  and 2  along with boundary conditions comes out of the form 
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and 
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along with boundary conditions 
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The solution for 1  is obtained from (26) by substituting o  and operating 
2L  subject to boundary conditions (27) as
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Similarly the solution for 2   is obtained by substituting 1  and o   in equation (28) along with respective boundary 

conditions  from (29) up to second order in   is 
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Now one can obtain the solution for   upto second order by using 21   o  and velocity components u  and w  

from equation (7). 

 

3.2   Solution of Energy Equation by ADM 

The energy equation (9) in terms of linear operator 1L  is 
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subject to boundary conditions
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where 1L  is defined as 
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and assume that inverse operator exist and defined as  

.(*)
1

(*)
1

1   










drdrr

r
L                    (37) 

Apply 
1

1


L  to equation (34), we obtain 
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(38)  

where 1C  and 2C  are functions of z  to be determined. Now 

for the different orders of   substituting 
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in equation (38) and comparing both sides, we get 

,ln 21 CrCo  ,                                                (40) 

and boundary conditions are 
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The solution for (40) subject to boundary conditions 

(41) is 

.1o                                                           (42) 

It is observed that the solution obtained in equation (42) is 

independent of Br  number, while the zeroth order 

perturbation solution involves Br  number. Now for the first 

and second order temperature equating the coefficients of   

and 
2  from (38) with respective boundary conditions from 

(35) as follows 
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with boundary conditions 
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 subject to boundary conditions 
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The solution of (43) along with boundary conditions (44) becomes 
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which depends upon ratio of heat production by viscous dissipation to heat transport by conduction. The solution of (45) along 

with boundary conditions (46) up to second order is 

      

       .11210''47254'
9

1

101437955133Re4
72

'1

24242

4

2
2

246246

5

2

2











ofpowerhigherfff
f

Br

Pe
f

fBr



























                     (48) 

which depends upon the heat production by viscous dissipation to heat transport and heat transport by convection to 

conduction. 

4   Wall Shear Stress: 
The dimensionless form of wall shear stress for viscous fluid is given by  
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Substituting the velocity components correct up to the second order in  , the wall shear stress is obtained of the form   
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The points of separation and reattachment at the wall are those points where the reverse flow occurs and obtained by setting the 

wall shear stress equal to zero  i.e, 0 . The resulting equation is quadratic in Re , the solution in terms of Reynolds 

number is
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                                                                                                                                                                                       (51).    

                

now from the above relation, our task is to find the critical 

Reynolds number graphically where the separation and 

reattachment points occurs. The expression for the pressure 

gradient up to third order in   is obtained by using the 

component form of momentum equation as follows 

 

5.  GRAPHICAL DISCUSSION: 

In this section effect of various parameters that control the 

fluid flow are discussed graphically. In figure 2, the stream 

lines for the flow pattern are shown by taking z -component 

parallel to the axis of the artery and r -component 

perpendicular to the axis of artery. It is observed that both the 

method gives similar presentation of stream lines. The zeroth 

order stream lines are presented in figure 2(a) by ADM and 

RPM. It is observed that the stream lines are relatively 

straight lines at the center for   = 0.20, Re  = 12,   = 0.1 

by both the methods and first order solution is depicted in 

figure 2(b) by ADM and RPM induces the clockwise and 

counterclockwise rotational motion in the converging and 

diverging regions of the artery. It is found from first order 

solution that the separation point lays in the converging 

region of the artery and reattachment point lies in the 

diverging region. Figure 2(c) presents graphically the flow 

pattern for the second order stream lines by ADM and RPM, 

which reinforce the first order solution and shows the 

rotational motion indicating the separation and reattachment 

points. Figures 2(d) shows the flow pattern of streamlines up 

to the second order in   by ADM and RPM, for the fixed 

values of the parameters in the converging and diverging 

regions of the artery. It is observed that the stream lines are 

relatively straight at the center. 

 

                                      
                                                  2(a)                                                                                      2(b) 

   

                                       
                                                   2(c)                                                                                     2(d) 

Fig. 2 The stream lines for the flow pattern 
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   Fig.3 Effect of Re  on wall shear stress by ADM.                        Fig.4 Effect of Re  on wall shear stress by RPM. 

Figures 3 and 4 depicts the effect of Re  on wall shear stress 

by using fixed values as    = 0.6 and   = 0.1 for ADM and 

RPM respectively. Wall shear stress increases as the Re  

increases near the throat of the artery and becomes negative 

in the converging and diverging sections of the artery. The 

negative shearing indicates the occurrence of separation point 

in the converging section and reattachment point in the 

diverging section of the artery. Figures 5 and 6 present the 

effect of   on wall shear stress by ADM and RPM 

respectively. It is observed that the flow indicates the 

Poiseuille flow in the absence of constriction. It is also 

observed that with the increase in height of constriction wall 

shear stress increases and become negative in the converging 

and diverging sections of the artery which are due to adverse 

flow and indicates the points of separation and reattachment.

 

 
Fig.5 Effect of   on wall shear stress by ADM.                          Fig.6 Effect of   on wall shear stress by RPM. 

 

Fig.7  Separation points in converging region by ADM.                Fig.8 Separation points in converging region by RPM. 
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Fig.9 Reattachment points in diverging region by ADM.                        Fig.10 Reatt. points in diverging region by RPM. 

 

Figures 7 and 8 present the phenomena of separation point in 

the converging region by ADM and RPM respectively. It is 

found that separation point occurs as there is no wall shear 

stress i.e., zero wall shear stress. In this analysis our aim is to 

find the critical Re  at which the separation occurs. It is 

observed that with the increase in   critical Re  decreases in 

the converging section of the artery. Figures 9 and 10 depict 

the reattachment point in the diverging region by ADM and 

RPM.  It is found that by the increase in   critical Reynolds 

number Re  decreases with the fixed value of   = 0.1. 

 

Fig.11  Effect of Pe  on temperature distribution by ADM.                     Fig.12 Effect of Pe  on temp. distribution by RPM. 

 

Fig.13 Effect of Br  on temperature distribution by ADM.     Fig.14 Effect of Br  on temp. distribution by RPM.
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Figures 11 and 12 present the effect of Pe  on temperature 

distribution by ADM and RPM respectively. It is observed 

that by the increase in Pe  along with the fixed values of the 

other parameters, the temperature increases over the 

constriction and becomes negative in the converging and 

diverging regions due to reverse flow. Similarly figure 13 and 

14 shows the behavior of Br  on temperature distribution by 

ADM and RPM respectively, for the fixed values of various 

parameters. It is found that as increase in Br  increases the 

temperature on the constricted region and becomes negative 

in the converging and diverging regions of the artery due to 

adverse flow. 

 

6.  CONCLUSION 
The analysis of steady state blood flow with heat transfer in 

an axisymmetric artery having constriction of cosine shape is 

presented. It is assumed that the blood behaves like the 

homogeneous and incompressible Newtonian fluid in an 

artery. The governing equations are transformed into stream 

function and solved analytically with the help of Adomian 

decomposition method and Regular perturbation technique. 

The solutions thus obtained are compared for velocity 

components, wall shear stress, separation and reattachment 

points and temperature distribution by two methods. Further 

discussion has been carried out on the impact of above 

mentioned quantities. It is observed that the solutions 

obtained in the analysis are comparable with the results 

existing in the literature. The general pattern of streamlines is 

same as [4] – [5], wall shear stress is similar as [2] – [3] and 

separation and reattachment points are identical with [3]. 

Conclusions made from the above investigations are as 

follows 

(i) Increase in Re  increases the velocity of blood, wall shear 

stress and temperature. 

(ii) Increase in   increases the velocity of blood, wall shear 

stress and temperature. 

(iii) Increase in   decreases the critical Re . 

(iv) Increase in Br  and Pe  increases the temperature. 
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